Thank you very much for your help. You are right, this is what I wanted :-)
Post by Jody Klymak*xerr*/*yerr*: [ scalar | N, Nx1, or 2xN array-like ]
If a scalar number, len(N) array-like object, or an Nx1
array-like object, errorbars are drawn at +/-value relative
to the data.
If a sequence of shape 2xN, errorbars are drawn at -row1
and +row2 relative to the data.
xdat=10**data_x_log
ax.errorbar(10**data_x_log,data_y,xerr=[xdat-error_x_lower,error_x_upper-xdat],ls='',marker='o')
Cheers, Jody
Post by Markus HaiderI have the error from a table which is in log units, and the error is
given to be symmetric in log space.
Cheers,
Markus
Post by Yuxiang WangTypo - "standard deviation OR standard error of mean", not "OF".
Sorry.
Shawn
Post by Yuxiang WangIf you error bars denote standard deviation of standard error of mean,
shouldn't they be non-symmetric in log scale?
Shawn
Post by Markus HaiderHi,
I am trying to make an errorbar plot with a logarithmic x-axis. I have
symmetric errors in logspace, however if I plot them, the errors are not
symmetric anymore, as you can see in the enclosed image. Am I
misunderstanding something or is this a bug?
Thanks for your help,
Markus
import matplotlib.pyplot as plt
import numpy as np
data_x_log = np.array([13.0,15.0])
data_y = np.array([0.5,1])
error_x_log = np.array([0.5,1.])
error_x_lower = 10**(data_x_log-error_x_log)
error_x_upper = 10**(data_x_log+error_x_log)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.errorbar(10**data_x_log,data_y,xerr=[error_x_lower,error_x_upper],ls='',marker='o')
ax.set_xscale('log')
ax.set_xlim([1E11,1E17])
ax.set_ylim([0,2])
plt.savefig('error.png')
------------------------------------------------------------------------------
BPM Camp - Free Virtual Workshop May 6th at 10am PDT/1PM EDT
Develop your own process in accordance with the BPMN 2 standard
Learn Process modeling best practices with Bonita BPM through live exercises
http://www.bonitasoft.com/be-part-of-it/events/bpm-camp-virtual- event?utm_
source=Sourceforge_BPM_Camp_5_6_15&utm_medium=email&utm_campaign=VA_SF
_______________________________________________
Matplotlib-users mailing list
https://lists.sourceforge.net/lists/listinfo/matplotlib-users
--
Yuxiang "Shawn" Wang
Gerling Research Lab
University of Virginia
+1 (434) 284-0836
https://sites.google.com/a/virginia.edu/yw5aj/
------------------------------------------------------------------------------
BPM Camp - Free Virtual Workshop May 6th at 10am PDT/1PM EDT
Develop your own process in accordance with the BPMN 2 standard
Learn Process modeling best practices with Bonita BPM through live exercises
http://www.bonitasoft.com/be-part-of-it/events/bpm-camp-virtual- event?utm_
source=Sourceforge_BPM_Camp_5_6_15&utm_medium=email&utm_campaign=VA_SF
_______________________________________________
Matplotlib-users mailing list
https://lists.sourceforge.net/lists/listinfo/matplotlib-users
--
Jody Klymak
http://web.uvic.ca/~jklymak/
------------------------------------------------------------------------------
BPM Camp - Free Virtual Workshop May 6th at 10am PDT/1PM EDT
Develop your own process in accordance with the BPMN 2 standard
Learn Process modeling best practices with Bonita BPM through live exercises
http://www.bonitasoft.com/be-part-of-it/events/bpm-camp-virtual- event?utm_
source=Sourceforge_BPM_Camp_5_6_15&utm_medium=email&utm_campaign=VA_SF
_______________________________________________
Matplotlib-users mailing list
https://lists.sourceforge.net/lists/listinfo/matplotlib-users