Romain Madar
2015-07-10 11:54:08 UTC
Dear experts,
I am trying to plot spherical harmonics with matplotlib and I have some
troubles. I am starting from the example
http://matplotlib.org/examples/mplot3d/surface3d_demo2.html where I
change the factor 10 in a function of r=f(theta,phi) (or r=f(u,v) as
they are named in the example). I observe very strange behaviours:
(1) (x,y,z) = (r cos(phi) sin(theta) , r sin(phi) sin(theta) , r
cos(theta)). But np.outer(a,b) is not commutative while the
multiplication is. So how to choose the order in the np.outer() product?
In fact, different order gives very different results.
(2) It's seem impossible to reproduce the well known Ylm(theta,phi)
plots. Using for example this document
http://www.cs.dartmouth.edu/~wjarosz/publications/dissertation/appendixB.pdf
:
I don't know if I am doing something wrong or so, but I don't understand
... My full code is bellow.
Thanks a lot in advance !
Cheers,
Romain
PS:
import math
import numpy as np
import pylab as p
from mpl_toolkits.mplot3d import Axes3D
def f(theta,phi):
return np.sin(phi)*np.cos(phi)*np.sin(theta)**2
fig = p.figure()
ax = fig.add_subplot(111, projection='3d')
theta = np.linspace(0, np.pi, 500)
phi = np.linspace(0, 2*np.pi, 500)
r = f(theta,phi)
x = r**2 * np.outer( np.cos(phi) , np.sin(theta) )
y = r**2 * np.outer( np.sin(phi) , np.sin(theta) )
z = r**2 * np.outer(np.ones(phi.shape), np.cos(theta))
#x = r**2 * np.outer( np.sin(theta) , np.cos(phi) )
#y = r**2 * np.outer( np.sin(theta) , np.sin(phi) )
#z = r**2 * np.outer( np.cos(theta), np.ones(theta.shape) )
ax.plot_surface(x,y,z)
ax.set_xlabel("X")
ax.set_ylabel("Y")
ax.set_zlabel("Z")
p.show()
--
=========================================================
Romain Madar
Laboratoire de Physique Corpusculaire de Clermont-Ferrand
Campus Universitaire des Cézeaux
4 avenue Blaise Pascal
TSA 60026, CS 60026
63178 AubiÚre cedex, FRANCE
Email: ***@cern.ch
Tel. : +33 (0)4 73 40 71 57
Off. : 8204-8205
=========================================================
I am trying to plot spherical harmonics with matplotlib and I have some
troubles. I am starting from the example
http://matplotlib.org/examples/mplot3d/surface3d_demo2.html where I
change the factor 10 in a function of r=f(theta,phi) (or r=f(u,v) as
they are named in the example). I observe very strange behaviours:
(1) (x,y,z) = (r cos(phi) sin(theta) , r sin(phi) sin(theta) , r
cos(theta)). But np.outer(a,b) is not commutative while the
multiplication is. So how to choose the order in the np.outer() product?
In fact, different order gives very different results.
(2) It's seem impossible to reproduce the well known Ylm(theta,phi)
plots. Using for example this document
http://www.cs.dartmouth.edu/~wjarosz/publications/dissertation/appendixB.pdf
:
I don't know if I am doing something wrong or so, but I don't understand
... My full code is bellow.
Thanks a lot in advance !
Cheers,
Romain
PS:
import math
import numpy as np
import pylab as p
from mpl_toolkits.mplot3d import Axes3D
def f(theta,phi):
return np.sin(phi)*np.cos(phi)*np.sin(theta)**2
fig = p.figure()
ax = fig.add_subplot(111, projection='3d')
theta = np.linspace(0, np.pi, 500)
phi = np.linspace(0, 2*np.pi, 500)
r = f(theta,phi)
x = r**2 * np.outer( np.cos(phi) , np.sin(theta) )
y = r**2 * np.outer( np.sin(phi) , np.sin(theta) )
z = r**2 * np.outer(np.ones(phi.shape), np.cos(theta))
#x = r**2 * np.outer( np.sin(theta) , np.cos(phi) )
#y = r**2 * np.outer( np.sin(theta) , np.sin(phi) )
#z = r**2 * np.outer( np.cos(theta), np.ones(theta.shape) )
ax.plot_surface(x,y,z)
ax.set_xlabel("X")
ax.set_ylabel("Y")
ax.set_zlabel("Z")
p.show()
--
=========================================================
Romain Madar
Laboratoire de Physique Corpusculaire de Clermont-Ferrand
Campus Universitaire des Cézeaux
4 avenue Blaise Pascal
TSA 60026, CS 60026
63178 AubiÚre cedex, FRANCE
Email: ***@cern.ch
Tel. : +33 (0)4 73 40 71 57
Off. : 8204-8205
=========================================================